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Abstract

The GeneralizedMethod ofCells(GMC),a micromechanics based

constitutivemodel, isimplemented intothe finiteelementcode MARC

using the user subroutineHYPELA. Comparisons in terms of trans-

versedeformationresponse,micro stressand straindistributions,and

requiredCPU time are presentedforGMC and finiteelement models

of a fiber/matrixunitcell.GMC isshown to providecomparable pre-

dictionsof the composite behaviorand requiressignficantl_"lessCPU

time as compared to a finiteelement analysisofthe unitcell.Details

as to the organizationof the HYPELA code axe provided with the

actualHYPELA code includedinthe appendix.

1.0 Introduction

In the design of aerospace components, the use of composite materials

such as metal matrix composites (MMC) are being investigated as a means

of obtaining increased operating loads, improved durability, and decreased

weight. For example, MMC's are being considered for critical engine compo-

nents, such as rotors, blades and nozzles which are subjected to high temper-

ature environments under complex load histories. From the analysis stand-

point, the use of nonlinear finite element methods will be required for the
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design and structural response predictions of" these components. In addition,

there is increased interest in developing life prediction methods to predict

the serv/ce life of these components which will also require accurate finite

element analysis.

When analyzing a structure using the finite element method a key ingre-

dient is the constitutive model as it determines how accurate the global re-

sponse of the structure will be predicted. For structures composed of isotropic

materials, there is considerable experience with plastic and viscoplastic con-

stitutive models and their implementation into the nonlinear Finite element

solution. On the other hand, the development of effective constitutive mod-

els for the nonlinear material response of a composite is relatively new. The

primary goal in formulating a constitutive model for composite materials is

the development of the relationship between the macro strain and the macro

stress, i.e. the effective macro stii_ess. There are two approaches [2] in mod-

eling the composite material: 1) a macro, equivalent, homogeneous material

model, 2) a micromechanics based model. Considering the operating envi-

ronment that the components will be subjected to, using a micromechanics

based material model may be necessary in order to include the many non-

linear mechanisms that occur within the composite, such as, fiber/matrix

debonding, localized matrix yielding, matrix cracking, oxidation effects, etc..

These type of effects are believed to be especially important for the life

analysis of the component. There has been debate whether or not using a

micromechanics based constitutive model in the finite element method is fea-

sible with regards to computational expense. This point will be addressed in

the following section by examining some of the various approaches currently
available.

2.0 Computational Aspects

The general solution algorithm for a nonlinear finite element analysis

will be discussed in terms of the computational effort required at both the

global (structural)level and the local (element)level. This discussion will be

used to show how the use of micromechanics based models may or may not

significantly increase the computational expense of a nonlinear finite element

analysis.



The nonlinear finite element equilibrium equation takes the form,

[KF{ u}= {aR} (I)

where [K] T is the structural tangent stiffness matrix and the term {AR} is

the out-of-balance force vector, i.e.,

I

{AR} -- {F} - f1 [B]T{ _r},ljl hl dt, drd s
= 1 1 J-1 t¢

(2)

Global equilibrium is satisfied by iterating on eqn. (1) until the out-of-

balance force vector {AR} is effectively zero (within some predefined conver-

gence tolerance). This global equilibrium equation therefore constitutes the
first level of iterations.

From the out-of-balance vector {AR}, eqn. (2), the integral is evaluated

at each integration point in the structure. Specifically, at each integration

point, the global finite dement solution provides the current strain state and
the current element stress a is obtained from the evaluation of the local

constitutive model. That is, the constitutive model calculates the current

stress and should provide the current material stiffness at that point. Thus a

micromechanics model needs to be able to take the macro/composite strain

and, after performing a local stress/strain analysis on the RVE, provide the

current macro/composite stress state and equivalent composite material stiff-

ness. Having the current equivalent composite material stif_ess will allow

the use of a tangent stii_ess matrix in the global equilibrium equation (1).

The advantage of using a tangent stiffness is the increased rate of conver-

gence in the global equilibrium iterations, with a quadratic rate obtainable

if a properly formulated local tangent stiffness is utilized.

It is apparent that the next important level of computations is at the

integration point. Here, one may or may not encounter local level iterations

which will depend on the type of constitutive model being used. For clarity

in the following discussion, assume that the material at the integration point

in question is isotropic.

If for example, a classical plasticity model is used, the radial return al-

gorithm, which is commonly used, requires local level iterations in order to

return the stress to the yield surface, an example of which is given in [11].

Another class of material models would be the ¢ontinuum-ba_d viscoplastic

models. These rate dependent models contain flow and evolution equations
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which must be integrated in time. This integration is performed using ei-

ther an explicit or implidt integration method. If an explicit integrator is

used, for example forward Euler, no additional local iterations are required.

But it is well documented that such explicit methods are conditionally sta-

ble and may require small global time steps in order to achieve convergence.

Solving a highly nonlinear structural problem with many small time steps

becomes computationally expensive. As a result, the use of implicit integra-

tors are increasingly being used since they are far more robust for integrating

the numerically "stiff" viscoplastic rate equations and provide unconditional

stability, thus allowing larger time steps to be used. But, due to their implicit

formulation, local interations are required.

From the above discussion, it is apparent that two levels of iterations are

typically required to solve highly nonlinear Finite element problems: 1) global

equilibrium, and 2) local constitutive model iterations. These multiple levels

of iterations are what makes nonlinear finite element solutions inherently

computationally expensive. Therefore, it is critical that any micromechanlcs

constitutive model be accurate yet efficient.

Any micromechanics method which is based upon a finite element RVE

becomes in effect a finite element analysis within a finite element analysis.

A complete nonlinear finite element analysis must be performed to take the

current macro strain state provided by the finite element solution and pro-

duce the current stress state in the RVE. Note that at this point, only the

micro stress/strain states exist. Additional computations are still required

to convert the micro (constituent) stresses to an equivalent macro compos-

ite stress state and calculate the equivalent macro material stiffness. An

example of a finite element based method is that presented by Wu et. al.

[15]. In this method a RVE for a periodic hexagonal array (PHA) finite el-

ement model is used to preform the micromechanics analysis and calculate

the instantaneous macro composite material stiffness. The PHA model in

effect serves as the local constitutive model and is called at each integsation

point in thestructure. Theultimate objective of a micromechanics analysis

is the calculation of the equivalent macro material stiffness. In this regard,

a so-called equivalent homogeneous volume, EHV, is introduced. The EHV

is defined by the equivalent macro instantaneous material parameters which

are considered as unknowns. These material parameters are determined by

applying the same periodic boundary conditions to the EHV as_e applied

to the RVE. Iterations are then performed until equilibrium is attained such
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that the EHV and RVE have the same total energy change. One can see

that the level of computational effort is increased. In addition, each _nite

element in this RVE has a constitutive model which must be evaluated and,

as discussed above, may or may not require local iterations in its calculations.

It is stated in [15] that accurate calculation at each material point requires

substantialeffortwhich would need to be repeated many times in a typical

nonlinear finiteelement analysis.

Another, more general,finiteelement based approach isthat of Fish and

VCaglman [7]which isapplicableto both periodic and non-periodic domains.

That is,the solution or the microstructure may be periodic or non-periodic.

In this approach, the homogenized material properties are based upon the

displacement fieldof the unit cellwhich is obtained by solving the finite

element model of the unit cellfor the six differentloading conditions.In ad-

dition,in this 'Ynultiscale"firdteelement method, two finiteelement meshes

may be used. A "macro" mesh isused for the global problem which isthe

part of the structurewhere the composite microstructure and the solution is

periodic. A second '_nicro"mesh isused for the localproblem where either

the solution or the rrdcrostructureisnot periodic. This produces a coupled

global/localproblem which, as described in [7],requiresan iterstivesolution

process.

From the above discussion,it is apparent that while the use of finite

element based micromechanics models provide significantcapabilities,the

associated computational expense (time and memory) and complicated algo-

rithms make them less attractive. The use of parallel computers and paral-

lelized/optimized code [13] in order to decrease computation time limits the

usefulness of the method since such sophisticated computer resources axe not

commonly available.

In order to reduce the computational expense, an efficient micromechan-

ics model should be more analytical in nature in which closed form expres-

sions are available for the macro/micro relationships. This class of models

are based upon micromechanics but include various assumptions in order to

derive semi-analytical expressions for the effective composite stiffness and

relationships between macro and micro stress and strain.

Svobodnik et. al. [12] use the vanishing fiber diameter model of Dvorak

and Bahei-E1-Din [6] in the context of the finite element method. In the

vanishing fiber model, the fibers are assumed to behave elastically to fail-

ure and any effects of fiber interaction are neglected. The result is a simple
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model which gives the equivalent macro response of the composite expressed

in terms of the constituentpropertiesand theirvolume fractions.Svobodnik

[12]demonstrates that the model may be implemented into the ABAQUS

finiteelement code with relativeease. There are limitationsof the vanishing

fibermodel. The fzrstisneglecting any fiberinteractioneffects.It has been

shown that packing arrangement, i.e.square, hexagonal, etc.,does have an

effecton the transverse response of the composite [3].A second limitationof

the model isthe inabilityto capture specificmicro stress/straindistribution

effectssuch as localizedyielding in the matrix [12]due to itsassumption of

homogeneous stressand strain fieldsin the fiberand matrix. Such a lim-

itation is important if accurate micro stressand strain is necessary as in

the case of damage/life analysisof the composite. With these lirrdtations,

itis believed that any benefit of using a micromechanics based model have

been lost.The choice of rnicromechanics-based models iseithera simplified

model which provides the necessary macro composite stressstrain relation

but because of itssimplifiedform isnot able to provide micro stressstrain

information in sui_cientdetail.On the other hand, finiteelement based rni-

cromechanics models do provide detailed (depending on mesh density) fiber

and matrix stressand straindistributionsbut at the costof significantcom-

putational expense in terms of the microlevel analysisand the calculationof

the current macro composite material stiffness.Thus the "best" microme-

chanics model would be a combination of the above two approaches, that is,

itwould provide sufficientlydetailedrnicrolevelstressand straindistributions

and a macro composite material stiffnessin an ei_icientmanner.

In thisregard, the Generalized Method of Cells (GMC) micromechanics

model of Paley and Aboudi [9]isbelieved to satisfythe above requirements.

GMC is an extension of Aboudi's earliermethod of cells[1]in that GMC

now allows for more than 4 subcellsto describe the fiberand matrix phases.

By having a variable number of subcells provides significantflexibilityin

modeling a varietyof RYE's, forexample differentfibershapes, fiberpacking

arrangements, inclusionof a fiber/matrix interfacelayer,etc. Some typical

RYE's constructed using GMC are shown in Figure 1. In addition, one of

the noteworthy featuresof the GMC model is that itprovides an apaIytical

constitutiveexpression for the composite as well as macro-micro relations

for stressand strain.Thus no iterationsare required,as in a finiteelement

based model, to obtain the current macro composite material stiffness.Yet,

as willbe shown in the followingsections,GMC provides detailedmicrolevel
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stress and strain distributions which are comparable to those obtained from

a finite element RVE analysis.

Some details of GMC pertaining to its implementation in the HYPELA

subroutine in MARC will be briefly outlined below. Additional theoretical

details may be found in [9].

3.0 Generalized Method of Cells: The HYPELA Subroutine

As mentioned in section 1, one of the uses for an efficient micromechanics

model would be in the finite element method. In order to access the re-

quirements of a micromechanics model in terms of CPU time and overhead,

i.e. memory/storage requirements, the GMC model has been implemented

into the finite element code MARC through the use of the user subroutine

HYPELA [8]. The subroutine HYPELA is provided for users to implement

their own constitutive models int o MARC. The implementation of GMC into

a HYPELA format was relatively straightforward. The main subroutine is

HYPELA which contains all of the micro and macro relationships that com-

prise GMC. A branch is made to the desired constitutive model for each

subcell material. The equations below are presented in the same order in

which they appear in the HYPELA subroutine. One of the key parts of
GMC is the formation of the A-matrix. This matrix consists of submatrices

which contain quantities defining the material constants and the geometry

of the individual subcells. The A-matrix is partitioned in the HYPELA

subroutine as follows,

A= AG J 0

Let the submatrix A* be defined as,

A* -- Aa

where A* is a square matrix with dimensions N/sxN, y. Also define K as,

......[]oK= j (5)



and A P as "

In the above matrices, the matrix AM involvesthe elasticmaterial properties

of the subcelland the matrix Aa involvesthe geometry of the subcelland the

matrix J relatesthe average composite strainto the average subcellstrain.

The only necessary modification to the code included in Appendix A is

the linking of a matrix routine for the inversionof the A matrix. It willbe

noted that in the present code, two linpack subroutines, i.e. SGEFA and

SGESL, were originallyused forthispurpose. The callsto these subroutines

are leftin the code to show the proper location for the matrix inversion

subroutine call.Also note that since only the _ material constants are

being used, itisonly necessary to form the A matrix at the initialtime step.

On the other hand, ifviscoplasticity(tangent stiffness)or damage effectsare

to be included in the stiffness,the A matrix would need to be calculated at

each time step.

Once the A-matrix has been formed, the effectivemacro composite elastic

stiffnessmay be calculatedfrom,

"y=l

in which C (_) isthe subcellelasticstiffness.Note that calculatingthe crit-

icalmacro stress/strainrelationshipnecessary for the global finiteelement

solution only required straightforwardmatrix multiplicationoperations.

Another advantage of GMC is that the inelasticresponse of the con-

stituentsmay be modeled using eithera plasticor viscoplasticconstitutive

model. The quantity _r(_) isthe inelasticstrainrate in the subcelland cal-

culated by callingthe appropriate constituentconstitutivemodel subroutine.

In the current implementation, an isothermal Bodner-Partom [5]viscoplas-

ticmaterial model isincluded. Additional material models can be included

with relativeease. Note that both the viscoplasticmaterial constants for

the Bodner-Partom model and the elasticmaterial constants are defined in

the HYPELA/GMC subroutine. The viscoplasticconstants are stored in the

two dimensional array VPROB and currently is dimensioned for two differ-

ent materials having a maximum of 12 viscoplastic constants per material.

Note that the constitutive model calculates the inelastic strain rate for each



subcell.That isthe matrix subcellinelasticstrain,_z0_-Y),iscalculated from

the flow law,

From the individual subcell inelasticstrainrates,the macro composite in-

elasticstrainrate,_, iscalculatedfrom,

_=1 "y=l

(0)

and isstored in the array EPG.

The average subcelltotalstrainrate,_,PT),isstored in the array ES and

iscalculatedfrom the relation,

_Y,_) = A*-lCS_)K_ + AP(_7)J (lo)

The average subcen stressrate,b(#'_),isstored in the array SS and isfound

from

= - (11)

where C_ ) is the elastic material stiffness of the (/3_/) subcell.

The macro composite strain rate, $ is stored in the array EG and is

calculated from the solution of the global (structural) finite element solution.

Note that in HYPELA, MARC provides the current strain increment in the

array DE and the rate is simply obtained by dividing each component by At.

Finally, the macro composite stress, $, is obtained from the expression,

= g) (12)

and is stored in the array SG.

Before leaving the subroutine HYPELA it is necessary to integrate the

above rate equations. Presently, the calculations in HYPELA are performed

in a sequence that is consistent with a simple forward Euler integration

scheme. The current solution at time t + At is found from,

xt+At __ x t + Atilt 03)
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where x is an array containing all of the macro and micro variables and the

array _ contains the rates which are evaluated based upon the previous con-

verged solution at time t. In the subroutine HYPELA the array SIGAL is

used to store the current total values of the stress, strain and internal state

field variables, while the array DSIGAL stores the rate of the stress, strain

and internal state field variables. These arrays are arranged identically. The

first 37 positions are used to store the macro (composite) state variables

which consist of total strain (6), Cauchy stress (6), inelastic strain (6), room

for two internal state variables (12),thermal strains (6) and current tem-

perature, in this order. The micro (subcell)quantities are then stored in

"blocks" of 36 which are organized according to the descriptiongiven above

for the macro quantitieswith the exception that no temperature variable is

stored. Presently,the arrays are dimensioned for a maximum of 49 subcells.

When the user subroutine HYPELA is used, MARC solves for global

equilibrium using the initialstrainform of the equilibrium equation, i.e.,

[K e] {AU} (0 -=

where [K e] is the global elastic stiffness. As a result, the macro composite

stress is placed in the vector S, the current inelastic strain increment is placed

in the vector G, and the macro composite elastic stiffness is placed in the

array D so that they may be passed back to the main MARC program.

4.0 Generalized Method of Cells Evaluation

In order to access the accuracy of GMC, a seriesof comparisons were

performed with finiteelement meshes representingthe fiberand matrix unit

cell.The finiteelement meshes used are shown in Figure 2. Material con-

stants for a SiC fiberand Ti-15-3 matrix at 426C were used in the present

analysis. The unit cellwas subjected to a tensileload under strain control

with the strainrate being 0.001/s to a maximum macro transverse strainof

0.02.

4.1 Macroleveh Deformation Response
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The results for longitudinal response were identical for all of the Finite

element meshes and the GMC models. This is to be expected since even

a simple rule of mixtures model can adequately predict the longitudinal re-

sponse. However, the transverse response requires more accurate modeling

of the unit cell. The transverse deformation response for the composite is

shown in Figure 3.

From Fig. 3, the 4 Fm/te element mesh grossly over-predicts by approxi-

mately 42% the transverse response as compared to the 4-cell GMC model.

The response for the 16 finite element mesh is approximately 4% too stiff,

while the response for the 64 finite element mesh is approximately 2% softer.

Note however that the 49-cell CMC model gives a softer response than the

4-cell model by approximately 8%. As a result, a 196-cell CMC model was

analyzed and its response matched that of the 49-ceU model. Thus the 49-cell

model has converged to the correct transverse response of the composite. The

272 finite element mesh is approximately 5% stiffer than the 49-cell CMC

model. Finally, a Finite element mesh of 1088 elements was used to match

the response of the 49-cell GMC model. A note should be made that it may

be possible to match the 49-cell response using a smaller finite element mesh.

As may be noted from figure 2, the 1088 mesh was obtained by simply re-

Fining the 272 mesh by subdividing each element into four elements. Thus

the 1088 element mesh may not be the "optimal" mesh using the minimum

number of elements required to converge with the 49-cell CMC model. In

any case, a finite element mesh larger than 272 elements is required to match

the response of a 49-cell CMC model. The implications of requiring such a

large finite element model will be discussed in section 4.3.

4.2 Microleveh Stress and Strain

The other aspect of choosing a rnicromechardcs model is how accurate

the rrdcrolevel fields are predicted. Of particular interest are the stress and

inelastic strain distributions. Figure 4 shows the effective stress, J2, distri-

bution for the 49-cell model and the 64 Fu_te element mesh. Note how the

distributions compare in both distribution and magnitude. Figure 5 shows
the effective inelastic strain distribution for the GMC and finite element mod-

els. Again, the distribution and magnitudes are comparable. One interesting

note is with regards to the in-plane shear stress distribution. Inherent in the

GMC method is the uncoupling of the shear and normal stress components.

That is, for a given applied normal stress, a shear stress will not be produced.
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As a result, there is a state of zero shear stress in the unit cell for the present

tensile test. On the other hand, there is a shear stress present in the finite

element solution. Figure 6 shows the shear stress distribution for the finite

element model. It is interesting to note that even with the absence of any

shear stress component, GMC still accurately predicts the macro transverse

deformation response. This maybe attributed to the fact that the effective

stress distribution does match that of the finite element solution [4]. Since

the viscoplastic model is "driven" by J2, the deformation response should be

comparable. However, the implications of GMC's lack of shear stress distri-

bution may surface when considering other aspects such as damage modeling.

For example, fiber/matrix debonding which may be a function of the local

shear stress in the interface region. Such issues are currently being addressed

in ongoing research.

4.3 Computation Time Comparisons

The goal is to be able to analyze composite structures at both the macro

and micro levels [2]. That is, to analyze the response of the structure

(macrolevel) and then, at various points in the structure, go to the microlevel

and determine the stress, strain and other internal state variables in the con-

stituents of the composite. This type of macro/micro analysis capability is

believed to be important when trying to capture the damage mechanisms oc-

curring at the fiber/matrix level which in turn affect the life of the structure.

In the context of the finite element method, these micro analyses would

be performed at each integration point. Recall that when forming the fi-

rite element local stiffness matrix, a constitutive model is called at each

integration point where for a given strain state, the corresponding updated

stress state and the material stiffness is returned. Thus, the 49-cell GMC

model, contained in HYPELA, would be evaluated at each integration point.

Similarly, one of the finite element models, either the 272 or 1088 element

mesh depending on the desired accuracy, would have to be evaluated at each

integration point.

To study GMC, only a single finite element was used. Therefore, the total

CPU time was then divided by eight (eight integration points per element)

to obtain the approximate CPU time at one integration point. On the other

hand, since the finite element model of the fiber/matrix unit cell would have

to be analyzed at each integration point, the _ CPU time was used for

comparison to GMC.
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With the above in mind, directcomparisons in terms of CPU time with

the 4, 16, 64, 272 and 1088 finiteelement models of the fiber/matrix unit

celland the 4 and 49 cellGMC models were performed. A second reason

for using a 49-cellmodel was that ifother RYE's are used to representother

fiber architectures (hexagonal pack, interfacelayer,etc.) the GMC RVE

would consistof 49 cellson average [3].

All of the resultspresented in the Tables were generated on the Cray-

YMP at NASA Lewis Research Center. Also, allofthe resultspresented have

been normalized with respect to the CPU time for the GMC model under

comparison. In Table I, ifthe 49-cellGMC model requires 1 CPU unit,

a finiteelement analysis using 1088 elements that provides the equivalent

accuracy, in terms of transverse displacement, requires approximately 3550

CPU units. This clearlydemonstrates the penalty one has to pay in terms

of the overhead required for the finiteelement method and the substantial

savings in CPU time the GMC method provides. One must alsorealizethat

the solution times reported here are only for the stressanalysis portion of

the unit cell.Determining the current equivalent inelasticmacro and micro

propertieshas not been performed. This phase willrequire what isbelieved

to be significantcomputation time. Further detailsof the calculationsthat

would be required in thisphase may be found in [14].

An alternative approach to the above micromechanics models are the

phenomenological continuum-based models. This class of models treat the

composite as an homogenous anisotropicmaterial in which no distinctionis

made between the fiberand matrix constituents.Therefore no micro stress-

straininformation isavailable.One of the arguments for using such models

is that they provide the necessary macro relationshipsrequired in a struc-

tural analysis and are believed to require the _lJnimum amount of compu-

tation time. For comparison purposes, Robinson's viscoplastic,transversely

isotropiccontinuum-based model [10]was characterized for the SiC/Ti-15-

3 composite. The viscoplasticmodel was then implemented into MARC

through the HYPELA subroutine. Again as in the case of the GMC model,

a singlefiniteelement was used and the totalCPU time was divided by eight

to obtain the approximate CPU time for one integrationpoint. The same

tensilestraincontroltest,as described above, was performed. Comparisons

of the CPU time for the GMC, finiteelement and continuum-based models

are given in Table 2. Note that the continuum model is20% fasterthan the

4-cellGMC model and 80% fasterthan the 49-celiGMC model. Of course,
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one needs to keep in mind that the GMC models provide additional infor-

mation on the micro (constituent) level that the continuum-based models do

not provide.

5.0 Conclusions

The Generalized Method of Cells micromechanics model has been im-

plemented into the finite element code MARC through the use of the user

subroutine HYPELA. The implementation was found to be rather straight-

forward requiring no more effort than other implementations of "standard"

constitutive models, for example the continuum-based viscoplastic model of

Robinson which was also used in a HYPELA subroutine for this work.

It was found that the finite element method requires a significant num-

ber of elements in order to adequately predict the transverse deformation

behavior of the composite. As a result, the computation time far exceeds

that required by the GMC model. An important point is that the CPU

time reported for the GMC model includes the calculations for the neces-

sary macro stress-strain relations, i.e. current RVE material stiffness. While

CPU times reported for the present finite element analyses are only for per-

forming the nonlinear stress analysis on the RVE. Additional calculations,

producing larger CPU times, are required to obtain the current RVE mate-

rial stiffness. The speed of GMC is attributed to the anai_rtical expressions

for the macro/micro stress strain relationships and for the macro composite
stiffness.

The GMC model has been shown to provide accurate effective stress, (J2

form), stress and inelastic strain distributions. One important observation

is the lack of any micro shear stress components for the GMC model. As

noted, this does not appear to affect the deformation response predictions of

GMC, but how this limitation would affect particular life prediction damage

models, which may depend on specific micro stress components, needs to be

investigated further. For example, how would an interracial debonding crite-

ria, which may be a function of the local in-plane shear stress, be affected?

Research in the area of life analysis is currently in progress.

6.0 Acknowledgement

This work was performed under NASA cooperative grant NCC3-368. The

grant monitor is Dr. Steven M. Arnold.

14



o

.

o

o

°

°

=

7.0 References

°

+

I0.

Aboudi, J.,"Mechanics of Composite Materials: A Unified Microme_

chanical Approach", Elsevier, 1991.

Arnold, S.M. and Castelli, M.G.: "Continuum Based Theorectical and

Experimental Studies in Deformation and Damage of MMCs at NASA-

Lewis:Progress and Trends", Comp. Engng., Vol. 4, No. 8, pp. 811-

828, 1994.

Arnold, S.M., Wilt, T.E., and Pindera, M.J.: "Impact of Fiber Archi-

tecture on the Inelastic Response of Metal Matrix Composites Via the

Generalized Method of Cells (GMC)', HITEMP Review 1994, NASA

CP 10146, pp. 30:1-14, 1994.

Arnold, S.M. Wilt, T.E., Sa!eeb, A.F., and Castelli, M.G.: "An Inves-

tigation of Marco and Micromechanical Approaches for a Model MMC

System", HITEMP Review 1993, NASA CP 19117, pp. 52:1-12, 1993.

Bodner, S.R. and Partom, Y.: "Constitutive Equation for Elastic-

Viscoplastic Strain Hardening Materials", Jnl. Appl. Mech., Vol. 42,

pp. 385- , 1975.

Dvorak, G. J., and Bahei-E1-Din, Y. A., "Plasticity Analysis of Fibrous

Composites", J. Appl. Mech., Vol. 49, pp.327-335, 1982.

Fish, J. and Wagiman, A. "Muir°scale Finite Element Method for a

Locally Nonperiodic Heterogeneous Medium", Comp. Mech., 12, pp.

164-180, 1993.

MARC K6 User Subroutines/Special Routines, Volume D, MARC Anal-

ysis Research Corporation, Palo Alto, California, 1994.

Paley, M. and Aboudi, J., "Micromechanical Analysis of Composites

by the Generalized Cells Model," Mechanics of Materials, Vol. 14, pp.

127-139, 1992

Robinson, D. N., and DutTy, S. F., "Continuum Deformation Theory

for High Temperature Metallic Composites", J. Eng. Mech., vol. 116,

n. 4, pp. 832-844, 1990.

15



11.

12.

13.

14.

15.

Simo,J. C. and Taylor, R. L., "A Return Mapping Algorithm for Plane

Stress Elastoplasticity", Int. J. Num. Meth. Engng., Vol. 22, pp. 649-

670, 1986.

Svobodnik, A. J., Bohm, H. J., and Rammerstorfer, F. G., "A 3/D

Finite Element Approach For Metal Matrix Composites Based On Mi-

cromechanical Models", Int. J of Plasticity, Vol. 7, pp. 781-822, 1991.

Swan, C. C., "Techniques for Stress- and Strain-controlled Homoge-

nization of Inelastic Periodic Composites", Comp. Meth. Appl. Mech.

Engng., 117, pp 249-267, 1994.

Teply, J. L. and Reddy, J. N., "A Unified Formulation of Micromechan-

ics Models of Fiber-Reinforced Composites", in Inelastic Deformation

of Composite Materials, IUTAM Symposium, Troy, New York, May 29

- June 1, 1990.

Wu, J. F., Shepard, M. S., Dvorak, G. J., and Bahei-E1-Din, Y. A.,

"A Material Model for the Finite Element Analysis of Metal Matrix

Composites", Composites Science and Technology, Vol. 35, pp. 347-

366, 1989.

16



Table 1: CPU Time Comparisons

GMC

case CPU time

4-cell 1.(1.17s)
49-cell 1.(5.o7s)

mes}, size

CPU time

CPU time

Finite Element

4 16 64

21 25 115

5 6 27

272

113o
261

1088

15000

3550

Table 2: Model Comparisons

case GMC F.E. (272)

4-cell 1.(1.17s 1130

49-cell 1.(5.07s) 261

Continuum

0.8

0.2
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Figure 1: GMC Representative Volume Elements
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Appendix A:

HYPELA subroutine for GMC

c############################################################################

SUBROUTINE HYPELA(D, G,E, DE, S, TEMP, DTE_P , NDUMM, N , _l, KC , MAT)NDM,

& NDUMMM)

IMPLICIT KEAL*8 (A-H,D-Z)

include 'Itpsw/marc/commonlelmcom'

include '/tpswlmarclcommon/concom'

C

C VVVV\IVXIVXIXIV\IVVXIVV\IVV\IVVVVVV\IVV\IVVV\
C

C

C

C

C

C

C

NBM - NUMBER OF SUBCELLS IN 2-DIRECTION

NBG - NUMBER OF SUBCELLS IN 3-DIKECTION

NMM - TOTAL NUMBER OF DIFFERENT MATERIALS

PARAMETER(NBM=7,NGM=7,NMM=2)

PAKAMETER(NSM=NBM*NGM,NAM=6*NSM,NAMI2=2*S*NSM+S,NMM36=36*NMM)

PARAMETER(SQ2=I.414215,PAI=3.141592)

LOGICAL FORDIS,HEAT,THME,NINDPT,PATRAN

COMMON IMLGIC/ FORDIS,HEAT,THME,NINDPT,PATRAN

COMMON /MICMAT/ EA(2),ET(2),GA(2),FNA(2),FNT(2),ALPA(2),ALPT(2),

& VPBP(S,2),VPROB(2,12)

COMMON /MICRO/ VF,MATNUM(2,2),NST,NMT,NB,NG,IDP,NSFD,

& NCMD

COMMON IMICR021VFI,VCI,VF2,VC2

COMMON IMICR03/ ICOUNT,NPLVL

COMMON /MICRO4/ A(NAM,NAMI2),XH(7),XL(7)

COMMON /MICRO5/ CTEMP

COMMON /MICROS/ SIGAL(181),DSIGAL(181)

c IVVVVVVVVVVVV\IVVVVVVVVVV\IVVVVVVVVV\I
C
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DIMENSION D(NGENS,NGENS),G(NGENS),E(NGENS),DE(NGENS),S(NGENS)

DIMENSION TEMP(1),DTEMP(1)

c \I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\

C

C DIMENSION STATEMENTS FOR GMC

C

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

STRO(6),STRC(6),ASTRO(6),ASTRC(e),CD(6,6),CDI(6,6)

STRAIN(6),STRESS(6)

EPSOG(6),EPIOG(6),STROG(6)

KPSOSC(6),EPIOSC(6),STROSC(6)

EPSI(6),STRESR(6),DER(6),ALPHR(6)

SA(26),PP(6),ZDRR(6),R(6),SD(6),EPlINC(6)

IPVT(NAM)

DIMENSION VS(NSM),VSI(NSM,NMM),VSMR(NSM),MATT(NMM)

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

GAM(3,NMM),GAMS(3),ALPS(3),ALPSI(3)

CS(6,6,NMM),CG(6,6),cI(e,6),CPDRV(6,6)

SG(6),EG(6),EPG(6),ETG(6),H(6),U(6,NSM)

SS(6),ES(6),EPS(NAM),ETS(NAM),UT(6,NSM),HT(3)

SIGL(36),DSIGL(36),ESO(6),EPSO(6),ETSO(6)

HILL(NSM,6,6),HILLT(NSM,3)

DIMENSION THKM(IO)

C I\1\i\1\1\1\1\1\1\1\1\1\i\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1

C

C Statement function: contracted notation indexation rule

C for generalized method of cells

C

PCON(IPCON,JPCON) = IPCON + JPCON

MCON(IMCON,JMCON) = INT( II(ABS(IMCON -JMCON)+I) )

NCON(INCON,JNCON) = MCON(INCON,JNCON)*PCON(INCON,JNCON)/2 +

& (1-MCON(INCON,JNCON))_(9-PCON(INCON,JNCON))

C GMC
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Purpose: Eeneralized cells model for metal matrix long-fiber

composites the fibers are oriented in %he xl-direction

EBM =

NGM =

NMM =

NSM =

CS =

CG =

CI =

SG =

EG =

EPG =

ETG =

SS =

ES =

EPS =

EPD =

ETS =

DTEMP =

MAX. NUMBER OF SUBCELLS IN BETA-DIRECTION (X2)

MAX. NUMBER OF SUBCELLS IN GAMMA-DIRECTION (X3)

MAX. NUMBER OF MATERIALS

NBM)NGM = MAX. NUMBER OF SUBCELLS IN A

REPRESENTATIVE CELL

CONSTII_JENT ELASTIC STIFFNESS TENSOR

GLOBAL (EFFECTIVE) ELASTIC STIFFNESS TENSOR

INVERSE OF CG

GLOBAL STRESS TENSOR

GLOBAL STRAIN TENSOR

GLOBAL PLASTIC STRAIN TENSOR

GLOBAL THER/4AL STRAIN TENSOR

SUBCELL STRESS TENSOR

SLrBCELL STRAIN TENSOR

SUBCELL PLASTIC STRAIN TENSOR

SUBCELL PLASTIC STRAIN-RATE TENSOR

SUBCELL THERMAL STRAIN TENSOR

DEVIATION FROM THE REFERENCE TEMPERATURE

NINDPT= FLAG WHEN MATERIAL CONSTANTS ARE INDEPENDENT

OF TEMPERATURE

NOTE THAT EG(4)=2*EPS23 ,EG(5)=2*EPSI3 , EG(6)=2*EPS12

AND SIMILAR RELATIONS HOLD FOR EPG(4),EPG(5),EPG(6)

Limit is currently set for a maximum of 4 subcells !!!!
_AAAA--AM_

I/0 FILES:

UNIT I CONTENTS

#60 - GRID INF0

#61 - PATGE0.GMC
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C
C

C
C_m_mmul

#62 - PATSTR.GMC

#66 - PROGRAM TRACE FILE

C Set parameters for generalized method of cells

NPLVL = I

FORDIS = .TRUE.

HEAT = .FALSE.

THME " .FALSE.

NINDPT = .TRUE.

IF(INC.EQ.O) THEN

ICOUNT = I

ELSE

ICOUNT = ICOUNT + I

ENDIF

IDP = 1

NB =2

NG = 2

PATRAN = .FALSE.

NCMD -- 1

TEMPR = O.

DTEMPR = O.

C Assign subcell material id.

C--_mw_w

C

MATNUM(1,1) = 1

MAgNUM(I,2) = 2

MATNUM(2,1) = 2

MATNUM(2,2) = 2

MATT(1) = 1

MATT(2) = 2
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C Material constants:

C NMT - number of different materials

C NST - number of subcells

C VF - fiber volume fraction

C VC - coa¢ing volume fraction

NMT = 2

NST = 4

VF = 0.35

VC = O.

C

C Elastic constituent material properties:
C

C Fiber:

C

EA(1) = 58.D3

ET(1) = 58.D3

GA(1) = 23.2D3

FNA(1) = 0.25

FNT(1) = 0.25

ALPA(1) = 1.

ALPT(1) = 1.

C D_O

VPROB(1,1) = O.

C Z_O

VPROB(1,2) = 1.

C Z_I

VPROB(1,3) = 1.

Cm

VPROB(1,4) - 1.

Cn

VPROB(I,5) = 1.

CQ

VPROB(1,6) = 1.
C
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C Matrix

C---------- .....

C

EA(2) = 11233.

ET(2) = 11233.

GA(2) = 4255.

FNA(2) - 0.32

FNT(2) = 0.32

ALPA(2) = 1.

ALPT(2) = 1.

VPROB(2,1) = 10.

VPROB(2,2) = 1600.

VPROB(2,3) = 1600.

VPROB(2,4) = 10.

VPROB(2,S) = 0.2

VPROB(2,6) = 10.

C

C--o

C Form elastic material stiffness

C--"

C

IF((NCYCLE+INC) .EO. O) THEN

GOTO 5100

ELSEIF(NCYCLE .EO. O) THEN

GOTO 5100

ELSE

C

ENDIF

C_mm_--gw

C Set global time step:

C 40 steps

GDT

C eps_max = 0.02 rate = 0.001

C

GDT = 0.5

C
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C {TEMP(1)} - cycle number

C {TEMP(2)} - global time step

--------.

C

C-

TEMP(1) = NCYCLE

IF(INC .GT. O) THEN

IF(NCYCLE .EQ. 1) THEN

DTEMP(2) = GDT

ENDIF

ELSE

TEMP(2) = O.

ENDIF

C {DE} - incremental strain vector

C

C GMC global strain rate vector {EG}

---- ....

C

LIM = 37 + NST*36

DO 1002 K = I,LIM

SIGAL(K) = TEMP(K+2)

DSIGAL(K) = DTEMP(K+2)

1002 CONTINUE

C

DO 1003 3=1,6

EG(J) = DE(J)/GDT

DSIGAL(J) = EG(J)

EPSOG(J) = TEMP(J+2)

STROG(J) = TEMP(J+8)

EPIOG(J) = TEMP(J+14)

STKESS (J) = S(J)

1003 CONTINUE

C

C Begin generalized method of cells code

C

C

C

\I \I \I \I \I \I \I \I \I \I \I \I \I \I \I \I \I \I \I \I \I \I \I V

SS



5100 CONTINUE

C

C Square packing (original method of

C

C

C

C

C

C

cells with 4 subcells)

IF(IDP.EQ.I ) THEN

XH(1)=SORT(VF)

XH(2)=I-SQRT(VF)

XL(1)=XH(1)

XL(2)=XH(2)

Triangle packing

ELSEIF(IDP .EQ. 2) THEN

IF(VF.LT.O.288675) THEN

XA=SQRT(SQRT(3.DO)*VF/2.DO)

XB=(I=XA)/2.0

XC=SQRT(3.DO/4.DO)-XA

XH(1)=XB-XA/2

XH(2)=XA

XH(3)=XB-XA/2

XH(4)=XA

XL(1)=XA

XL(2)=XC

XL(3)=XA

XL(4)=XC

ELSE

XA=DSQRT(DSQRT(3.DO)*VF/2.DO)

XB=(1-XA)/2

XC=DSORT(3.DO/4.DO)-XA

XH(1)=2.0*XB

XH(2)=XA/2.0-XB

XH(3)=2.0*XB

XH(4)=XA/2.0-XB

XL(1)=XA

XL(2)=XC
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XL(3)=XA

XL (4) =XC

ENDIF

C

C Square diagonal packing

C

ELSEIF(IDP .EO. 3) THEN

XA=DSQRT (VF/2. DO)

XH(1)=(1 .-2.*XA)/2.

XH(2)=XA

XH(3) =(I-2*XA)/2

XH(4)=XA

XL(1)--XA

XL (2) = (1-2*XA)/2

XL(3)=XA

XL(4) = (I-2*XA)/2

Cross shape fiber (square packing)

--------------------------------o

C

ELSEIF(IDP .EQ. 4) THEN

XB=-2. *XA÷DSQRT (4. DO*XA**2. DO*VF)

XH(1)=XA

XH(2)=XB

XH(3):XA

XH (4) =I-2*XA-XB

XL(1)=XH(1)

XL (2) :XH(2)

XL(3)=XH(3)

XL(4)=XH(4)

C

C .................... --------.

C Coated fiber (square packing); vc=coating volume fraction

C ............. ------------.

C

ELSEIF(IDP .EQ. 5) THEN
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XA=DSQRT(VF)

XH(2)=XA

XH(1) = ( -XA+DSORT (VF+VC))/2.

XH(3)=XH(1)

XH(4) =1- (XH (1) +XH (2) +XH(3) )

XL(1)=XH(1)

XL(2) =XH(2)

XL(3)=XH (3)

XL(4)=XH(4)

C

_u

C Circular fiber approximation

C (49 cell model)

C

ELSEIF(IDP .Eq. 6) THEN

RADIUS=DSQRT(VF/PAI)

HH=I. 0

XH (2) =DSQRT (PAI) *RADIUS/DSQRT (52. DO)

XH(3)=XH(2)

XH (4) =4. O*XH (2)

XH(5) =XH(3)

XH (6) =XH(2)

XH(1) = (HH-2. O*XH (2) -2. O*XH (3) -XH (4))/2.0

XH(7)=XH(1)

XL(1)=XH(1)

XL (2)=XH(2)

XL(3)=XH(3)

XL (4)--XH(4)

XL (5) =XH (S)

XL(6) =XH(6)

XL(7) =XH (7)

ENDIF

C

C-

C

C

C-

C

Calculate subcell volume

{vs}
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1010

1012

C

1114

1113

C

------_u

SUMH=O

DO 1010 I=I,NB

SUMH=SUMH+XH(I)

CONTINUE

SUNL=O

DO 1012 I=I,NG

SUML=SUML+XL(I)

CONTINUE

DO 1113 IB=I,NB

DO 1114 IG=I,NG

VS(NG*(IB-1)÷IG)

CONTINUE

CONTINUE

C Subcell information output

C (optional)

------.

C

1120

C

IF(NPLVL.GE.5) THEN

WRITE(66,683)

WRITE(66,684)

ENDIF

TOTV=O.O

DO 1120 IB=I,NB

DO 1120 IG=I,NG

IS=NG*(IB-1)+IG

MN=MATNUM(IB,IG)

KK = MATT(MN)

TOTV=TOTV ÷ VS(IS)

IF(NPLVL.GE.5) THEN

WRITE(66,685)

ENDIF

CONTINUE

XH(IB)*XL(IG)

IB,IG,IS,MN,KK,VS(IS)

C Calculate subcell material volume ratio
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c {VSMR}
C

C

DO 1130 MN=I,NMT

VSMR(MN)=O

DO 1130 IS=I,NB*NG

VSI(IS,MN)=O

1130 CONTINUE

DO 1140 IB=I,NB

DO 1140 IG=I,NG

IS=NG*(IB-1)+IG

MN=MATNUM(IB,IG)

VSI(IS,MN)=VS(IS)

1140 CONTINUE

DO 1141MN=I,NMT

DO 11411S=I,NB*NG

VSMR(MN)=VSMR(MN)÷VSI(IS,MN)

1141 CONTINUE

DO 1142 MN=I,NMT

VSMR(MN)=VSMR(MN)/TOTV

IF(NPLVL.GE.5) WKITE(66,143) MN,VSMK(MN)

1142 CONTINUE

C

-------------------------- .....

C Initialization

C

1150

1160

C

NST=NB*NG

DO 1150 I=1,6

DO 1150 3=1,6

DO 1150 K=I,NMM

CS(I,J,K)=O

CONTINUE

DO 1160 I=1,6

DO 1160 J=1,6

CI(I ,J)=O

CG(I ,J)=O

CONTINUE
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C DEFINE THE TEMPERATUR31-DEPENDENT PROPERTIES AT 6 DIFFERENT

C TEMPERATURES: THRM(I) ,I=I...6

C FOR INTERMEDIATE TEMPERATURES APPLY A LINEAR INTERPOLATION

C ===> CURRENTLY ONLY FOR BODNER MODEL <===

C

C

C

c

C

C

C

C

C

C

C

C

c

C

C

&

&

&

IF(HEAT .OR. THME) THEN

IF(NCMD.EO.1) THEN

TEMPR = CTEMP

IF(TEMPR.GE.THRM(1).AND.TEMPR.LE.THRM(2)) THEN

I=2

ELSEIF(TEMPR.GE.THRM(2).AND.TEMPR.LE.THRM(3)) THEN

I=3

ELSEIF(TEMPR.GE.THRM(S).AND.TEMPR.LE.THRM(4)) THEN

I=4

ELSEIF(TEMPR.GE.THRM(4).AND.TEMPR.LE.THRM(5)) THEN

I=5

ELSEIF(TEMPR.GE.THRM(5).AND.TEMPR.LE.THRM(6)) THEN

I=6

ELSE

WRITE(66,*) 'GMC: **** ERROR ****'

WRITE(66,*) 'TEMPERATURE IS OUT OF RANGE ',TEMPR

STOP

ENDIF

DIFF=(TEMPR-THBR(I))/(THKM(I)-THRM(I-I))

DO 1200 KK=I,NMT

IF(NPLVL.GE.5) WRITE(66,*) 'GMC: NM ',NM,' KK ',KK

EA(KK) = EATM(I,KK)+

(EATM(I,KE)-EATM(I-1,KK))*DIFF

FNA(KK) = FNATM(I,KE)+

(FNATM(I,KK)-FNATM(I-I,KK))*DIFF

ET(KK) = ETTM(I,KK)+

(ETTM(I,KK)-ETTM(I-I,KK))*DIFF

FNT(KK) = FNTTM(I,KK)+

(FNTTM(I,KK)-FNTTM(I-I,KK))*DIFF

GA(KK) = GATM(I,KK)+

(GATM(I,KK)-GATM(I-I,KK))*DIFF

ALPA(KK) = ALPATM(I,KK)÷
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C

C

C

c1200

C

C

c

C

C

C

c

C

c

C

c1210

&

_t (ALPATN(I,KK)-ALPATM(I-1,KK))*DIFF

ALPT(KK) = ALPTTM(I,KK)+

(ALPTTM(I,KK)-ALPTTM(I-1,KK))*DIFF

CONTINUE

ELSEIF(NCMD.NE.1) THEN

CALL CONEVL(

DO 1210 KK=I,NMT

EA(KK) = PEM(I,KK)

ET(KK) = PEM(2,KK)

GA(KK) = PEM(3,KK)

FNA(KK) = PEM(4,KK)

FNT(KK) = PEM(S,KK)

ALPA(KK) = PEM(6,KK)

ALPT(KK) = PEM(7,KK)

CONTINUE

ELSE

WRITE(66,*) 'GMC: ERROR IN TEMPERATURE'

' DEPENDENT CONSTANTS'

STOP

ENDIF

ENDIF

C

----m----wl

C Elastic stiffness matrix

C

DO 1230 NM=I,NMT

[CS] for each subcell

GT = O.5*ET(NM)/(I+FNT(NM))

FK = 0.25,EA(NM)/(O.S*(1-FNT(NM))*

(EA(NM)/ET(NM))-FNA(NM)**2)

CS(1,1,NM) = EA(NM) + 4,FK,FNA(NM)**2

CS(2,I,NM)

CS(3,I,NM)

CS(1,2,NM)

CS(2,2,NM)

CS(3,2,NM)

CS(1,3,NM)

CS(2,S,NM)

= 2*FK*FNA(NM)

= 2*FK*FNA(NM)

= 2*FK*FNA(NM)

= FK+GT

= FK-GT

= 2*FK*FNA(NM)

= FK-GT
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c

CS(3,3,NM) = FK+GT

CS(4,4,NM) = OT

CS(5,5,NM) = GA(NM)

CS(6,6,NM) = OA(NM)

IF(NPLVL.OE.5) THEN

IF(NPLVL.GE.2 .and.

write(66,*) 'nm ',nm

write(66,*) 'ns ',ns

WRITE(66,8266)

WRITE(66,8267)

WRITE(66,8267)

WRITE(66,8267)

WRITE(66,8268)

ENDIF

C

C Thermal

C-

C

&

1230

C

C ......

inc.ge.O .and. nn.eq.1) then

CS(1,1,NM),CS(1,2,NM),CS(1,3,NM)

CS(2,1,NM),CS(2,2,NM),CS(2,3,NM)

CS(3,1,NM),CS(3,2,NM),CS(3,3,NM)

CS(4,4,NM),CS(5,S,NM),CS(6,6,NM)

stress vectors [GAM] of subcells

GAM(1,NM)=CS(1,1,NM)*ALPA(NM)+(CS(1,2,NM)+

CS(1,3,NM))*ALPT(NM)

GAM(2,NM)=CS(1,2,NM)*ALPA(NM)+(CS(2,2,NM)+

CS(2,3,NM))*ALPT(NM)

GAM(3,NM)=CS(1,3,NM)*ALPA(NM)+(CS(2,3,NM)+

CS(3,3,NM))*ALPT(NM)

CONTINUE

C Compute the concentration factor

C initialization of the a-matrix

--------.

1250

1240

C

DO 1240 J=l, 6*NST +

DO 1250 I=I,6*NST

A(I,J)=O.O00

CONTINUE

CONTINUE

6 ÷ 6*NST
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1650
1660
1670
1680
C

C''

NSR = NG*(IB-1) ÷ IGR

MSL = MATNUM(IB,IGL)

MSR = MATNUM(IB,IGR)

NA=NA + 1

DO 1650 NC=1,6

A(NA,6*(NSL-I)+NC) = CS(MC,NC,MSL)

A(NA,6,(NSR-1)+NC) = -CS(MC,NC,MSR)

A(NA,6,(NST+NSL)+NC) = CS(MC,NC,MSL)

A(NA,6*(NST÷NSR)+NC) = -CS(MC,NC,MSR)

CONTINUE

CONTINUE

CONTINUE

CONTINUE

C Displacement continuity conditions

C----Qg

C ES11(B,G)=EG11

C

B=I ..... NB ; G=I, .... NG

1705

1710

C

C'"

DO 1710 IB=I,NB

DO 1705 IG=I,NG

NA=NA+I

A(NA,6*NB*NG+I) = I

NS = NG*(IB-1)÷IG

A(NA,6*(NS-1)+I) = 1

CONTINUE

CONTINUE

C SUM [H(B),ES22(B,G)]=H*EG22 G=I ..... NG

C

DO 1720 IG=I,NG

NA=NA+I

A(NA,6*NB*NG+2) = SUMH

DO 1715 IB=I,NB

NS = NG*(IB-1)+IG
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1715

C

C

A(NA,6*(NS-1)+2) = XH(IB)

CONTINUE

C SUM [H(B)*ESI2(B,G)]=H,EGI2 G=I .... ,NG

1718

1720

C

C

NA=NA+I

A(NA,8*NB*NG+6) = SUMH

DO 1718 IB=I,NB

NS = NG*(IB-I)+IG

A(NA,6*(NS-1)_6) = XH(IB)

CONTINUE

CONTINUE

C SUM [L(G)*ES33(B,G)]=L,EG33

C

B=I, .... NB

C

1725

C

C

DO 1730 IB=I,NB

NA=NA÷I

A(NA,6*NB*NG+3) = SUML

DO 1725 IG=I,NG

NS = NG*(IB-1)+IG

A(NA,6*(NS-I)+3) = XL(IG)

CONTINUE

C SUM [L(G)*ES13(B,G)]=L*EG13

C

B=I, .... NB

1728

1730

C

NA=NA+I

A(NA,6*NB*NG+5) = SUML

DO 1728 IG=I,NG

NS = NG*(IB-I)+IG

A(NA,6*(NS-1)+5) = XL(IG)

CONTINUE

CONTINUE
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C--_mmw_g

C SUM SUM

C--o

[H(B)*L(G)*ES23(B,G)]=H*L*EG23

C

1735

1740

C

NA=NA+I

DO 1740 IB=I,NB

DO 1735 IG=I,NG

A(NA,6*NB*NG+4) = SUMH*SUML

NS = NG_(IB-I)+IG

A(NA,6_(NS-1)+4) = XH(IB)*XL(IG)

CONTINUE

CONTINUE

CALL SGEFA(A,NAM,6*NB*NG,IPVT,INFO)

IF(INFO.NE.O) STOP

DO 2110 I=I,8+6*NB*NG

CALL SGESL(A,NAM,6*NB*NG,IPVT,A(I,6*NB*NG+I),O)

2110 CONTINUE

C

C Compute the effective elastic stiffness matrix [CG]

C

2760

2770

2780

2790

2800

C

DO 2800 I=1,6

DO 2790 3=1,6

DO 2780 IB=I,NB

DO 2770 IG=I,NG

IS=NG*(IB-1)+IG

IM=MATNUM(IB,IG)

TMP=O.O00

DO 2760 M=1,6

TMP=TMP + CS(I,M,IM)*A(8*(IS-1)+M,6*NST÷J)

CONTINUE

CG(I,J)=CG(I,J) + VS(IS)*TMP/(SUMH*SUML)

CONTINUE

CONTINUE

CONTINUE

CONTINUE
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------

C MARC control statements

------------.

IF((NCYCLE+INC) .EQ. O)

CALL PLACE(CG,D,36)

TEMP(1) w O.

TEMP(2) ffiO.

CALL ZEROR(SIGAL,181)

CALL ZEROR(DSIGAL,181)

CALL ZEROR(SIGL,36)

CALL ZEROR(DSIGL,36)

RETURN

ELSEIF(NCYCLE .EQ. O) THEN

CALL PLACE(CG,D,36)

RETURN

ELSE

CALL PLACE(CG,D,36)

CALL PLACE(CG,CD,36)

ENDIF

C

--------------.

THEN

C Invert the effective

C ........ ------------.

C

elastic stiffness matrix [CG]

DET=CG(1,1)*(CG(2,2)*CG(3,3)-CG(2,3)**2)

& -CG(1,2),(CG(I,2)*CG(3,3)-CG(2,3)*CG(1,3))

& +CG(I,3),(CG(I,2)*CG(2,3)-CG(2,2)*CG(1,3))

CI(1,1)=(CG(2,2)*CG(3,3)-CG(2,3)**2)/DET

CI(I,2)=(-CG(I,2)*CG(3,3)+CG(I,3)*CG(2,3))/DET

CI(1,3)=(CG(I,2)*CG(2,3)-CG(I,3)*CG(2,2))/DET

CI(2,2)=(CG(I,I)*CG(3,3)-CG(1,3)*CG(1,3))/DET

CI(2,3)=(-CG(1,1)*CG(2,3)+CG(I,2)*CG(I,3))/DET

CI(3,3)=(CG(I,1)*CG(2,2)-CG(1,2)*CG(1,2))/DET

CI(4,4)=I/CG(4,4)

CI(5,5)=1/CG(5,5)

CI(6,6)=1/CG(6,6)

CI(2,1)=CI(1,2)

CI(3,1)=CI(1,3)

CI(3,2)=CI(2,3)
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C

IF (NPLVL. GE. 5) THEN

Wl_rI'E (66 ,,869)

WRITE(66,91)

WRITE (66,92)

WRITE(66,93)

WRITE(66,94)
WRITE(ee,9s)

WI_ITE (66,96)

W_ITE(66,97)

WRITE(66,98)

ENDIF

C

C Compute the

C

2761

2801

C

I./CI(1,1)

-CI(1,2)/CI(1,1)

1./CI(2,2)

-CI(2,3)/CI(2,2)

1./CI(3,3)
1./ci(4,4)

1./cI(s,s)
1./ci(6,6)

effective coefficients

DO 2801 I=1,3

GAMS(I)=O.

DO 28011G=I,NG

DO 28011B=I,NB

IS=NG*(IB-1)+IG

NN=MATNUM(IB,IG)

SUM=O

DO 2761 K=1,3

SUM=SUM +A(6*(IS-1)+K,6*NST+I)*GAM(K,MM)

CONTINUE

GAMS(I)=GAMS(I)+VS(IS)*SUM/(SUMH*SUML)

CONTINUE

ALPS(1)=CI(1,1)*GAMS(1)+CI(I,2)*GAMS(2)+CI(I,3)*GAMS(3)

ALPS(2)=CI(2,1)*GAMS(1)+CI(2,2)*GAMS(2)+CI(2,3)*GAMS(3)

ALPS(3)=CI(3,1)*GAMS(1)+CI(3,2)*GAMS(2)+CI(3,3)_GAMS(3)

C

C Determine the effective cte directly from the model

C-

IF(HEAT .OR. THNE) THEN
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3140

3130

C

DO 3130 IB=I,NB

DO 3130 IG=I,NG

NS=NG*(IB-I)÷IG

NM=MATNUM(IB,IG)

KK = NM

ETS(6*(NS-I)+I)=ALPA(KK)

ETS(6*(NS-I)+2)=ALPT(KK)

ETS(6*(NS-I)+3)=ALPT(KK)

ETS(6*(NS-I)+4)=O

ETS(6*(NS-I)+5)=O

ETS(6*(NS-I)+6)=O

DO 3140 JJ=l,6

DSIGAL(37+(36*(NS-I))+(JJ+30))=ETS(6*(NS-1)+JJ)*DTEMPR

CONTINUE

CONTINUE

C [UT] = lAP (B, G)] *{ETS}

------ ............... -__.__

C

DO 3145 NS=I,NST

DO 3145 I=1,6

UT(I,NS)=0

DO 3145 J=I,6*NST

UT(I,NS)=UT(I,NS)+A(6*(NS-1)+I,6*NST+6+J)*ETS(J)

3145 CONTINUE

C

C {HT}=SUM SUM (VS(B,G)* [CS]*([UT(B,G)]-[ETS(B,G)]))/TOTV

---- .............. --------------.----------.

C

DO 3150 I=1,3

HT(I)=O

DO 3150 IB=I,NB

DO 3150 IG=I,NG

NS=NG*(IB-I)+IG

NM=MATNUM(IB,IG)

DO 3150 M=1,3
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&

3150

C

C-°

C {ALPS}:- [CI]*{HT}

C

DO 3160 I=i,3

ALeS(I) = O.

DO 3160 M=1,3

ALeS(I) = ALPS(I)-CI(I,M)*HT(M)

3160 CONTINUE

C

C--

HT(I)=HT(I)+VS(NS)*

CS(I,M,NM).(UT(M,NS)-ETS(6*(NS-1)+M))/(SUMH*SUML)

CONTINUE

C CALCULATE INSTANTANEOUS THERMAL EXPANSION

C

C

C CALL ALPEVL(ALPS,VS,SUMH,SUML,ALPSI)

ELSE

CALL ZEROR(ETS,NAM)

ENDIF

C

C Determina%ion of hill concen%razion

C %ensors [HILL] in subcell (B,G)

C [HILL(B, G)] = [CS(B,G)]* [A(B,G)]* [CI]

C'"

DO 3170 IB=I,NB

DO 3170 IG=I,NG

NS=NG*(IB-1)+IG

NM=MATNUM(IB,IG)

DO 3170 I=1,6

DO 3170 J=1,6

HILL(NS,I,J)=O

DO 3170 M=1,6

DO 3170 N=1,6

HILL(NS,I,J)=HILL(NS,I,J)+
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3170

C

&

CONTINUE

CS(I,M,NM)*A(6*(NS-1)+M,6*NST÷N)*CI(N,J)

IF(INC.ge.O .AND.

WRITE(6,7129)

DO 3180 IB=I,NB

DO 3180 IG=I,NG

NS=NG*(IB-1)+IG

WRITE(6,7126) IB,IG

DO 3181 I=1,6

WRITE(66,7128)

3181 CONTINUE

3180 CONTINUE

ENDIF

C

------------.

NPLVL.GE.5) THEN

(HILL(NS,I,J),J=I,6)

C De%ermination of hill thermal concentration

C vector [HILLT] in the subcells

C [HILLT(B, G)] =- [CS (B, G) ]. ([UT(B, G)] - [ETS (B, G)] + [A(B, U)] *{ALPS})

C

IF(HEAT .OR. THME) THEN

DO 3185 1=1,3

DO 3185 IB=I,NB

DO 3185 IG=I,NG

NS=NG*(IB-1)+IG

NM=MATNUM(IB,IG)

HILLT(NS,I)=O

DO 3185 M=1,3

HT(M)=O

DO 3190 N=1,3

HT(M)=HT(M)+A(6*(NS-1)+M,6*NST+N)*ALPS(N)

3190 CONTINUE

HILLT(NS,I)=HILLT(NS,I)

& -CS(I,N,NM)_(UT(M,NS)-ETS(6_(NS-1)+M)+HT(M))

3185 CONTINUE

C

IF(INC.EQ.O .AND. NPLVL.GE.5) THEN

WRITE(66,7139)
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DO 3200 IB=I,NB

DO 3200 IG=I,NG

NS=NG* (IB- i)+IG

WRITE(66,7138) IB,IG,(HILLT(NS,I),I=I,3)

3200 CONTINUE

ENDIF

ENDIF

C

C Finish elastic calculations

----_u

C Begin inelastic calculations

C

DO 8800 IB=I,NB

DD 8750 IG=I,NG

NS - NG*(IB-1) + IG

NM = MATNUM(IB,IG)

2222

C

C-

C

C

C

C-

C

DO 2222 J=1,6

EPSOSC(J) = TEMP((2 + 37 + (38.(NS-1))) +J)

STROSC(J) = TEMP((2 + 37 ÷ (36.(NS-1))) +J+6)

EPIOSC(J) = TEMP((2 + 37 + (36_(NS-1))) +J+12)

CONTINUE

Copy subcell quantities from

{SIGAL} TO {SIGL} AND

{DSIGAL} TO {DSIGL}

7705

C

C

C

DO 7705 KK=1,36

SIGL(KK) = SIGAL(37+(36*(NS-1))+KK)

DSIGL(KK) = DSIGAL(37+(36*(NS-1))+KK)

CONTINUE

Call constitutive model to get:

inelastic strain rate {EPS}

5O



C

C

C

C-

and state variable rates

IF(NCMD .EO. I) THEN

CALL BODNER(DSIGL,SIGL,STRDSC,NM,NS,INC,N,NN)

ELSE

Insert other viscoplastic material models here

WRITE(66,*)

STOP

ENDIF

'ILLEGAL MODEL'

C

C

Cm

Copy subcell quantities into appropriate

postions in {SIGAL} and {DSIGAL}

C

77OO

C

------m--,

DO 7700 KK=1,36

SIGAL(37+(36*(NS-1))÷KK) = SIGL(KK)

DSIGAL(37÷(36_(NS-1))+KK) = DSIGL(KK)

CDNTINUE

C Copy subcell plastic strain rate {EPS}

C from {DSIGAL}

------

8750

8800

----.

EPS(6,(NS-1)+l)=DSIGAL(37÷(36_(NS-1)+13))

EPS(6_(NS-I)+2)=DSIGAL(37+(36_(NS-I)÷14))

EPS(6_(NS-I)+3)=DSIGAL(37+(36_(NS-1)+15))

EPS(6_(NS-1)_4)=DSIGAL(37+(36_(NS-I)÷16))

EPS(6,(NSml)+5)=DSIGAL(37+(36_(NS-I)÷17))

EPS(6_(NS-1)+6)=DSIGAL(37+(36_(NS-I)+18))

CONTINUE

CONTINUE

C End subcell loop

m------.
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C

C--

C

C-"

C

8910

8920

8930

C

8940

8960

8950

C

Compute the average composite plastic strain rate {EPG}

DO 8930 IS=i,NST

DO 8920 1=1,6

U(I,IS)=O.O00

DO 8910 J=I,6*NST

U(I,IS)=U(I,IS) + A(6,(IS-I)+I,6*NST+6+J)*EPS(J)

CONTINUE

CONTINUE

CONTINUE

&

DO 8950 I=I,6

H(I)=O.ODO

DO 8960 IB=I,NB

DO 8960 IG=I,NG

IS=NG*(IB-1)+IG

IM=MATNUM(IB,IG)

DO 8940 J=I,8

H(1)=H(1) +VS(IS)*CS(I,J,IM)*(U(J,IS)-EPS(6*(IS-I)+J) )

/(SUMH,SU_)

CONTINUE

CONTINUE

CONTINUE

DO 8980 I=1,6

EPG(I)=O.ODO

DO 8970 J=1,6

EPG(I) = EPG(I) - CI(I,J)*H(J)

8970 CONTINUE

DSIGAL(I+I2) = EPG(I)

8980 CONTINUE

C

C------mm

C Global strains {DSIGAL(I-6)}

C--

C
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C Subcell loop

C ...... ------ .... ------

C

DO 9775 IB=I,NB

DO 9775 IG=I,NG

C

C

C

9100

9150

C

Compute the average strain rate {ES} in the subcell

{ES}= [A(B,G)]*{EG} + [AP(B,G)]*{EPS} + [AP(B,G)]*{ETS}

NS = NG_(IB-I) + IG

NM = MATNUM(IB,IG)

DO 9150 M=I,6

ES(M) = U(M,NS) ÷ UT(M,NS)*DTEMPR

DO 9100 N=l,6

ES(M) = ES(M) + A(6*(NS-1)+M,6*NST+N)*EG(N)

CONTINUE

DSIGAL(37÷(36*(NS-1))÷M) = KS(M)

CONTINUE

C Compute the average stress rate {SS} in the subcell

C {SS}= [CS] * (ES(B ,G) -EPS(B ,G)-ETS (B ,G) )

--------

9200

C

C

C

C

--m--w

C

CALL ZEROR(SS,6)

DO 9250 M2=1,6

DO 9200 N2=1,6

SS(M2) = SS(M2) ÷ CS(M2,N2,NM)*(ES(N2)-EPS(6*(NS-1)+N2)-

ETS(6*(NS-1)+N2)*DTEMPR)

CONTINUE

IF(NINDPT) GOTO 9010

Add addtional term in stress rate equation
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C when [CS] is a function of temperature

C

C

9701

&

9251

IF(HEAT .OR. THME) THEN

IF(M2.EQ.1) THEN

CALL CSEVAL(CPDRV)

ENDIF

IF(M2.EQ.1) THEN

DO 9701 I=1,6

ESO(I) = SIGAL(37+(36*(NS-1))+I)

EPSD(I) = SIGAL(37+(36*(NS-I)+(I+I2)))

ETSO(I) = SIGAL(37+(36*(NS-1)+(I+30)))

TEMPO = SIGAL(37)

CONTINUE

ENDIF

DO 9251 N3=1,6

ADDTRM = CPDRV(M,N3),DTEMPR*(ESO(N3)-EPSO(N3)-ETSO(N3))

SS(M2) = SS(M2) +

CPDKV(M2,N3)*DTEMPR*(ESO(N3)-EPSD(N3)-ETSO(N3))

CONTINUE

ENDIF

C

9010 CONTINUE

C

------u--wwm_

C Copy subcell stress rate {SS} to {DSIGAL}

C

DSIGAL(37+(36*(NS-1))÷(M2+6)) = SS(M2)

9250 CONTINUE

9775 CONTINUE

C

C Compute the average composite

C thermal strain rates {ETG}

C {ALPSI} - instantaneous thermal

C expansion coefficient

C-"

C
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CALL ZEROR(ETG,6)

IF(HEAT .OR. THME) THEN

ETG(1) = ALPSI(1)*DTEMPR

ETG(2) = ALPSI(2)*DTEMPR

ETG(3) = ALPSI(3)*DTEMPR

ETG(4) = 0

ETG(5) = 0

ETG(6) = 0

ENDIF

C Copy global thermal strain rates

C to {DSIGAL(31-36)}

C--

c

9889

C

DO 9889 JJ=l,6

dsigal(jj+30) = etg(jj)

DSIGAL(3J+30) = 0.0

CONTINUE

C------ram.

C Compute the average composite stress rate field {SG}

C and copy to {DSIGAL(7-12)}

C------m--.

DO 9890 I=1,6

SG(I)= 0.000

DO 9885 3=1,6

SG(I) = SG(I) + CG(I,J)*(EG(J)-EPG(J)-ETG(J))

9885 CONTINUE

DSIGAL(I+6) = SG(I)

9890 CONTINUE

C

c /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\

C

C End generalized method of cells code

C

C--------.
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C Integrate rates usin E forward euler

C

C-°

C Form MARC increment vector {DTEMP}

C

5000

C

LIM = 37 + NST*36

DO 5000 K = I,LIM

DTEMP(K+2) = GDT*DSIGAL(K)

CONTINUE

C

C--win

C

5010

C

{G} - MARC vector of inelastic strain increment

CALL ZEROR(G,6)

DO 5010 I = 1,6

DO 5010 J - 1,6

G(I) = G(I) + GDT,CD(I,J),DSIGAL(J+12)

CONTINUE

C Update MARC stress vector {S}

C from {SIGAL(7-12)}

5020

C

CALL ZEROR(S,6)

DO 5020 I z 1,6

S(I) w SIGAL(I+6)

CONTINUE

+ GDT,DSIGAL(I+6)

RETURN

C

C Format statements

C

91 FORMAT(SX,'EIIs =_,ElI.3)
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92

93

94

95

96

97

98

99

C

143

C

683

684

685

C

866

867

868

869

870

C

990

991

C

6333

6334

6335

6336

C

7134

7126

7128

7129

7138

FORMAT(5X,'N12s=',E11.3)

FORMAT(SX,'E22S=',E11.3)

FORMAT(5X,'N23S=',E11.3)

FORMAT(5X,'E33S=',EIt.3)

FORMAT(5X,'G23S=',EII.3)

FORMAT(5X,'GI3S=',EI1.3)

FORMAT(5X,'G12S=',E11.3)

FORMAT(5X,'ALPHAIIS=',EII.3)

FORMAT(IOX,'Material No.=',I2,7X,'Volume Ratio = ',E10.3,/)

FORMAT(IOX,'Subcell Data:'//)

FORMAT(IX,'(BETA [ GAMMA)',2X,'SC #',2X,'SC MAT. #',2X,

&'SC MAT. TYPE',2x,'SUBCELL VOLUME'/)

FORMAT(2X,I2,1X,'I',I2,5X,I3,5X,I2,5X,I2,12X,EIO.3)

FORMAT(IIISX,'CG EFFECTIVE STIFFNESS MATRIX'//)

FORMAT(5X,EIO.3,3X,EIO.3,3X,EIO.3)

FORMAT(44X,ElO.3/

57X,E10.3/

70X,E10.3)

FORMAT(II5X,'EFFECTIVEENGINEERING MODULI'I/)

FORMAT(SX,'EFFECTIVE THERMAL EXPANSION COEFFICIENTS'//)

FORMAT(SX,'ALPHA22S=',EIl.3)

FORMAT(5X,'ALPHA33S=',Ell.3)

FORMAT(5X,

FORMAT(SX,

FORMAT(5X,

FORMAT(SX,

'EG',IX,6EIO.3,/)

'SG',IX,6EIO.3,1)

'EPG',IX,6EIO.3,1)

'ETG_,IX,6EIO.3,/)

FORMAT(/,SX,'The Effective Coefficients Of Thermal Expansion',l,

& 5X,'Obtained Directly From The Model (And Not Via Levin Formula)'

l,lOX,3Ell.3,1)

FORMAT(/,IOX,'IB=',I3,2X,'IG=',I3)

FORMAT(5X,6EII.4)

FORMAT(19X,'Hill Concentration Tensors Of The Subcells')

FORMAT(5X,'IB=',I2,2X,'IG=',I2,2X,3E11.4)
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7139 FORMAT(I,7X,'Hill Subcell Thermal Concentration Vectors',/)

C

8266 FORMAT(IIISX,'[CS] Effective Stiffness Matrix',//)

8267 FORMAT(SX,EIO.3,3X,EIO.3,3X,EIO.3)

8268 FORMAT(44X,E10.3/

& 57X,ElO.3/

& 70X,E10.3)

END

C

C############################################################################

SUBROUTINE BODNER(DSA,SA,STRC,NM,NS,INC,N,NN)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

PURPOSE: Bodner-Partom Viscoplastic Model

Note: I) In This Subroutine, [SA] And [DSA] Contain The

"Micro" Quantities For Aboudi's Micromechanics Model

2) Arrangement Of [DSA] & [SA] Arrays

Variable Location

Strain Rate (1-6)

Stress Rate (7-12)

Inelastic

Strain Rate (13-18)

12 "Slots"

For State Variables

(19-30)

Thermal Strain Rate (31-36)

NM - MATERIAL NUMBER

NS - SUBCELL NUMBER

CALLED FROM: HYPELA (GMC)
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C_

C

C

C

IMPLICIT REAL*8 (A-H,O-Z)

LOGICAL FORDIS,HEAT,THME,NINDPT,PATRAN

COMMON /MLGIC/ FORDIS,HEAT,THME,NINDPT,PATRAN

COMMON /MICMAT/ EA(2),ET(2),GA(2),FNA(2),FNT(2),ALPA(2),ALPT(2),

VPBP(6,2),VPROB(2,12)

COMMON /MICKO/ VF,MATNUM(2,2),NST,NMT,NB,NG,IDP,NSFD,NCMD

COMMON /MICA02/ VF1,VC1,VF2,VC2

COMMON IMICR03/ ICOUNT,NPLVL

COMMON /MICRO5/ CTEMP

DIMENSION SS(6),S(6),R(6),DSA(36),SA(36),STRC(6)

C.

C

C--

C

Extract appropriate viscoplastic material constants

DO = VPROB(NM,I)

ZO =VPROB(NM,2)

Zl = VPROB(NM,3)

BM = VPROB(NM,4)

AN = VPKOB(NM,5)

Q = VPROB(NM,6)

C

C-

C

o o

Compute the deviatoric stress {S} in the subcell

TEMP = (SS(1) + SS(2) + SS(3))/3.

S(1) = SS(1) - TEMP

S(2) = SS(2) - TEMP

S(3) = SS(3) - TEMP
s(4) = ss(4)

s(s) - ss(5)
s(6) - ss(6)
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--_--m_m_--_--w_m--_w--m_--_w_m_--_m

C Predict the average plastic strain-rate

--om--o

C

AJ2=0.5"(S(I)*'2+S(2)_.2+S(3)*_2)+S(4)_2÷S(5)_'2+S(6)*_2

SO3AJ = SQRT( SS(1)*'2 + SS(2)*_2 + SS(3)*.2 ÷

& 2"(SS(4)*_2+SS(5)_'2+SS(6)*_2) )

SQ2=1.414215

IFCSQ3AJ.EQ.O.) THEN

CALL ZEROR(R,6)

ELSE

R(1) = SS(1)/SQ3AJ

R(2) = SS(2)/SQ3AJ

R(3) = SS(3)/SQ3AJ

K(4) = SQ2*SS(4)/SQ3AJ

RCs) = SQ2,ss(s)/SQ3AJ

R(6) = SQ2*SS(6)/SQ3AJ

ENDIF

C

C,

C If DO=O then assume elastic and zero-out

C [DSA(13-30)] (inelastic strain rate and

C internal variable rates), then return

----w------m--.

C

IF(DO.EQ.O) THEN

DO 100 33=13,30

DSA(JJ) = 0.0

I00 CONTINUE

RETURN

C-

C Inelastic

ELSE

C

ZEF = ZO + Q*SA(20) +

& (I-Q)*(R(1)*SA(21)+R(2)_SA(22)+R(3)*SA(23)+

& R(4),SA(24)+R(5)*SA(25)+R(6),SA(26))
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C

C-

C

C

IF(AJ2 .EQ. 0.) THEN

AL=O.O

ELSE

ARGI=ZEF**2/(3.*AJ2)

CON=.5*(AN+I.)/AN

ARG=CON*(ARGI)**AN

AL=DO/(EXP(ARG)*SORT(AJ2))

ENDIF

Inelastic strain rates

DSA(13) = AL*S(1)

DSA(14) = AL*S(2)

DSA(15) = AL*S(3)

DSA(16) = 2*AL*S(4)

DSA(17) = 2*AL*S(5)

DSA(18) = 2*AL*S(6)

C

C Plastic work rate

C

WPD = S(1)*DSA(13) + S(2)*DSA(14) + S(3)*DSA(15) +

S(4)*DSA(16) + S(5)*DSA(17) + S(6)*DSA(18)&

C

C

C .... --.

C

C

State variable rates

DSA(19) = WPD

ZOM=BM/ZO

ZD=ZOM,(Zl-ZEF)*NPD

DSA(20)=ZD

DSA(21)=ZD*R(1)

DSA(22)=ZD*R(2)

DSA(23)=ZD*R(3)
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DSA(24)=ZD,R(4)

DSA(2S)=ZD,R(5)

DSA(26)=ZD,R(6)

ENDIF

RETURN

END

C##########################################################################

SUBROUTINE PLACE (A,B,NN)

C

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION A(NN),B(NN)

DO 10 I=I,NN

B(I)=A(I)

iO CONTINUE

RETURN

END

C######################################################################

SUBROUTINE ZEROR(A,IDIM)

PURPOSE: ZERO AN ARRAY

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION A(IDIM)

DO I00 I=I,IDIM

A(1) = 0.0

100 CONTINUE

RETURN

END

C#####################################J############################
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